A Light-Responsive Release Platform by Controlling the Wetting Behavior of Hydrophobic Surface Linfeng Chen et al.

Outline

- Big Picture
- Applications
- Detailed Overview
- Experimental Results
- Conclusions

Big Picture

Applications

- Biomedical Applications
- Therapeutics
- Imaging
- Diagnosis
- Previous Platform Designs:
- Nanopistons
- Polymers
- Tunable hydrophobic polymers

Applications

- Biomedical Applications
- Therapeutics
- Imaging
- Diagnosis
- Previous Platform Designs:
- Nanopistons
- Polymers
- Tunable hydrophobic polymers

Hydrophobic layer

$\mathrm{H}_{2} \mathrm{O}$

UV light

Characterization of MS

FTIR Characterization of Functionalized MS

- MS-FNH2 (amine- and fluorinated silane-modified MS)
- MS was treated with APTES PFTDES

$$
-\mathrm{Si}\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{CF}_{2}\right)_{7} \mathrm{CF}_{3}
$$

- MS-FSP $=$ SP-COOH $+\mathrm{MS}-\mathrm{FNH}_{2}$

Loading the Cargo Molecule

- Fluorescein disodium (FD)
- Sonicate MS-FSP with FD in ethanol/water (8 hours)
- Centrifuge and wash with water
- Dry at $50^{\circ} \mathrm{C}$ under vacuum (24 hours)

Hydrophobic/Hydrophilic Release Process

Fully Functionalized MS Under UV Irradiation

Proposed Model

Assessing the Surface Wettability

Low Water Adhesion: $39.0 \pm 2.7 \mu \mathrm{~N}$
High Water Adhesion: $88.7 \pm 13.1 \mu \mathrm{~N}$

In vitro Light-Controlled Release

- Two cell lines
- EA.hy926 (human umbilical vein endothelial cells)
- HeLa cells (a cell line from human cervical cancer cells)
- Cargo Molecule: camptothecin (CPT)
- Cells incubated with MS-FSP-CPT for 24 hours

Cell Viability

Cell Viability

Endocytosis

Endothelial cells incubated with modified MS loaded with FD

Conclusion

Acknowledgements and Questions

Thanks for listening!

L. Chen, W. Wang, B. Su, Y. Wen, C. Li, Y. Zhou, M. Li, X. Shi, H. Du, Y. Song and L. Jiang, A Light-Responsive Release Platform by Controlling the Wetting Behavior of Hydrophobic Surface. ACS Nano. 2014, 8 (1), pp 744-751.

