Borrower: RAPID:ORE

Lending String:

Patron:

Journal Title: South African journal of chemistry = Suid-Afrikaanse tydskrif vir chemie.

Volume: 43 Issue: 1
Month/Year: 1990 Pages: 28-33

Article Author: Giles, R. G. F., I. R. Green, and V. I. Hugo.

Article Title: Model studies towards xylindien precursors

Imprint:

ILL Number: -7435908

Best Copy Possible
Model studies towards xylidine precursors

Robin G.F. Giles
Department of Chemistry, University of Cape Town, Rondebosch 7700, Republic of South Africa

Ivan R. Green
Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville 7535, Republic of South Africa

Victor I. Hugo
School of Physical Sciences and Mathematics, Cape Technikon, Longmarket Street, Cape Town 8001, Republic of South Africa

Received 21 July 1989

Alternative synthetic methodology has been investigated for the preparation of 3-propyl-3,4,5,10-tetrahydroxynaphtho[2,3-c]pyran-1,5,10(1H)-trione (3) with the view to making it more generally applicable to the synthesis of precursors viz. (2) to the extended pigment xylidine (1). Indications are that the more highly oxygenated naphthalene systems react less favourably towards free radical alkylations and mild oxidation than the simpler cases.

Alternatiewe sintetiese metodologie is ondersoek vir die voorbereiding van 3-propyl-3,4,5,10-tetrahydroxynaphtho[2,3-c]pyran-1,5,10(1H)-trione (3), met die doel om dit van meer algemene toepassing te maak vir voorlopers nl. (2) tot die uitgebreide pigment xylideens (1). Aanduidings is dat hoe meer die naftalenkem geoksidigeneer is, hoe swakker reageer dit met betrekking tot vryradikaalklaring en matige oksidasie vergeleke met meer eenvoudige gevalle.

* To whom correspondence should be addressed.

The naturally occurring quinonoid pigment xylidine (1) is widely distributed in nature and has had its structure elucidated. As a consequence of certain anaerobic coupling reactions of aphid degradation products by Blackburn et al., it was noted that xylidine-type systems could thereby be generated. This observation led Giles et al. to postulate that the lactone (2) could be a likely precursor to xylidine (1), and led to the development of a method for the synthesis of the 7,9-dioxo analogue (3).

In attempting to extend the earlier methodology of Giles et al. to tetraoxogenated systems, certain major difficulties were encountered. Thus, when the 1,4,5,7-tetramethoxynaphthalene (4) was brominated with N-bromosuccinimide under a wide variety of free radical bromination conditions, only the 8-bromo derivative (5) was isolated. All attempts to brominate the benzylic position failed, owing to the competing reactivity of position 8 in the naphthalene nucleus. Consequently, a new route to the model lactone (3) was sought with the view to extending this methodology in the synthesis of 2.

All attempts to acylate 1,4-dimethoxynaphthalene with trifluoroacetic anhydride failed in our hands. However, treatment with premixed trifluoroacetic anhydride and glacial acetic acid gave rise to an 80% yield of the corresponding 2-acyl derivative (6). This case of acylation suggested a viable alternative synthetic route towards the synthesis of lactone (3) and more generally, lactone (2).

Thus, oxidation of ketone (6) with aqueous sodium hypochlorite produced a high yield (98%) of the corresponding napthoic acid (7), which was identified by a broad band in the i.r. spectrum at 3200—2300 cm⁻¹ and in the ¹H n.m.r. spectrum, by a D₂O exchangeable proton at δ 9.10. Conversion of the acid (7) into the corresponding acid chloride proceeded smoothly with thionyl chloride at room temperature. The product was not isolated, but was used immediately for further elaboration to the amide (8) by treatment with aqueous methylamine.

Oxidative demethylation of amide (8) with silver(II) oxide and nitric acid afforded an excellent yield of the amide quinone (9). It was necessary to have the molecule at this oxidation level since it was now possible to effect a free radical alkylation regiospecifically at position 3. Thus, quinone (9) was treated with 3-hydroxyhexanoic acid in the presence of silver nitrate and potassium persulphate under nitrogen to yield the 3-alkylated quinone (10) in 52% yield. The quinone carbonyl groups were clearly evident in the i.r. spectrum by the presence of a strong band at 1665 cm⁻¹. The ¹H n.m.r. spectrum of this quinone showed inter alia the N-methyl group as a doublet at δ 2.85 (J 5 Hz) and the α-methylene-hydrogens as a separate multiplet at δ 2.45, while the β-methylene proton appeared as a multiplet at δ 3.80 deshielded by the attached oxygen. All attempts to form the desired lactone (3) by pyrolysis of quinone (10) failed, and resulted in extensive decomposition. This problem was successfully overcome in the following way.

Reductive methylation of quinone (10) yielded the naphthalene dimethyl ether (11) which, upon pyrolysis under nitrogen, afforded the 8-lactone (12), identical in all respects to the material previously prepared by Giles et al. Oxidative demethylation of lactone (12) led to the isolation of the target 8-lactone (3), also identical with the material previously prepared.

Attention was then focussed on the synthesis of tetraoxogenated analogues of the series just investigated, and thus the analogue (13) was chosen since the starting materials were available.
signal was evident in the ^1H n.m.r. spectrum at $\delta 3.73$, the structure assigned for this product is the dichloronaphthalene (17). The more shielded signal at $\delta 7.33$ was assigned to 6-H while the less shielded signal at $\delta 7.53$ was assigned to 2-H.

A possible mechanism for this aromatic substitution reaction is illustrated in Scheme 1.

Scheme 1

Lowering the temperature in the treatment of the naphthalenic acid (16) with thionyl chloride was also unsuccessful since, in this instance, the sole product isolated in high yield was the 8-chloronaphthalide (18). This again illustrated the highly reactive nature of position 8 of these naphthalenic systems supporting some earlier findings by Giles et al.10

The precise mechanism of the aromatic chlorination at position 8 would be speculative at this stage, since the thionyl chloride was distilled prior to use and, although the mode of attack should be by electrophilic chlorine, the origin of such a species is unknown.

In viewing alternative routes towards the synthesis of amide (19) it was found that this could best be achieved by first converting the naphthoic acid (16) into the corresponding methyl ester (20) by the mild method employing iodomethane in the presence of potassium carbonate in dry acetone, followed by ammonolysis with aqueous methylamine. By this method, a high yield [85% from acid (16)] of amide (19) was achieved and the product was identified by three prominent signals in the ^1H n.m.r. spectrum. Thus, the signal for 6-H appeared as a shielded doublet ($J 2.5$ Hz) at $\delta 6.53$, while that of 8-H appeared as the less shielded doublet ($J 2.5$ Hz) at $\delta 7.20$. The signal for 2-H appeared as a singlet at $\delta 7.47$, being the most deshielded of the three, owing to the anisotropic effect of the adjacent amide group. Similar trends were observed for the ester (20) (see Experimental).

Oxidative demethylation of the amide (19) with silver(II) oxide and nitric acid produced the desired quinone (21) in poor yield (24%), in contrast to the excellent yield (92%) obtained in the analogous synthesis of quinone (9) from amide (8). The signals for the aromatic protons in quinone (21) were definitive in the ^1H n.m.r spectrum, with that of 6-H appearing as a doublet ($J 2.5$ Hz) at $\delta 6.70$ while that of 8-H also appeared as a doublet ($J 2.5$ Hz), but at $\delta 6.80$, showing the expected deshielding by the peri carbonyl group. The signal for the quinonoid
mass spectra were recorded on a Varian MAT 311 A spectrometer. I.r. spectra were measured as Nujol mulls on a Pye-Unicam SP3-300 spectrometer and calibrated against the 1601 cm\(^{-1}\) peak of polystyrene film. Microanalyses were carried out on a Heraeus CHN-RAPID analyser. Column chromatography was carried out using Merck Kieselgel (70—230 mesh). Light petroleum refers to the fraction of boiling point 60—80°.

1,4-Dimethoxy-2-naphthoic acid (7) Ketone (6)\(^7\) (1 g; 4.35 mmol) in dioxane (40 ml) was added dropwise over a period of 1 h to a stirred solution of sodium hypochlorite (10—14% m/v; 90 ml) at 75°C. After addition, the resulting solution was stirred at 75°C for a further 75 min, after which the solution was cooled and sodium disulphide (5 g) in water (30 ml) was slowly added. The solution was washed with dichloromethane to remove any organic material. Thereafter, the aqueous phase was acidified (dilute HCl), and the solid material was filtered off and washed with water. The solid was then chromatographed using ethyl acetate—light petroleum (3:1) as eluent. In this way, the pure naphthoic acid (7) was obtained (720 mg; 72%), m.p. 167—168°C (acetone—light petroleum); \(\nu_{\max} 3200—2300 (OH)\) and 1675 (C=O) cm\(^{-1}\); \(\delta 4.03\) (3H, s, OCH\(_3\)), 4.10 (3H, s, OCH\(_3\)), 7.30 (1H, s, 3-H), 7.5—8.35 (4H, m, ArH), and 9.1 (1H, br. s, D\(_2\)O exchangeable, COOH) (Found: C, 67.1; H, 5.25. Calc. for C\(_9\)H\(_8\)O\(_2\): C, 67.25; H, 5.15%). It was found that using sodium hypobromite improved the yield to 98%.

N-Methyl-1,4-dimethoxy-2-naphthamide (8) The acid (7) (3.8 g; 16.38 mmol) was stirred with thionyl chloride (40 ml) for 40 min at room temperature, after which the excess of reagent was removed under reduced pressure. The oily residue was immediately taken up in dry acetone (10 ml) and slowly added to a stirred solution of cold (0°C) dimethylformamide (40% aqueous; 30 ml) and stirring was continued for 1 h. Thereafter, the reaction mixture was poured into water (150 ml) and dilute hydrochloric acid was added until the mixture became acidic to litmus. During this period, a solid precipitated was which was filtered off and washed with water. Chromatography using an eluent of ethyl acetate—light petroleum (1:3) afforded the amide (8) as colourless crystals (3.8 g; 88%), m.p. 121—122°C (chloroform—light petroleum); \(\nu_{\max} 3300 (NH)\) and 1635 (C=O) cm\(^{-1}\); \(\delta 3.05\) (3H, d, J 5.7 Hz, OCH\(_3\)), 3.90 (3H, s, OCH\(_3\)), 4.00 (3H, s, OCH\(_3\)), 7.40 (1H, s, 3-H), and 7.45—8.35 (5H, m, ArH and NH) (Found: C, 68.55; H, 6.10; N, 5.75. Calc. for C\(_{10}\)H\(_8\)N\(_2\)O\(_2\): C, 68.55; H, 6.10; N, 5.70%).

N-Methyl-2-carboxamido-1,4-naphthoquinone (9) To a mixture of the amide (8) (600 mg; 2.30 mmol) and silver(II) oxide (1.52 g; 12.26 mmol) in dioxane (10 ml) at room temperature was added nitric acid (6M, 4 ml) over a period of 5 min. Thereafter, the reaction was quenched by the addition of a chloroform—water mixture (26:6 ml). The organic layer was separated and the aqueous layer was extracted with dichloromethane.

Experimental

\(^{1}\)H N.m.r. spectra were recorded in deuteriochloroform on either a Varian EM 360, Varian XL-100 or Varian XL-200 spectrometer. Mass spectra were recorded on a VG Micromass 16F mass spectrometer at 70 eV and an ion source temperature of 180—220°. High resolution

N-Methyl-1,4-dimethoxy-2-naphthamide (8) The acid (7) (3.8 g; 16.38 mmol) was stirred with thionyl chloride (40 ml) for 40 min at room temperature, after which the excess of reagent was removed under reduced pressure. The oily residue was immediately taken up in dry acetone (10 ml) and slowly added to a stirred solution of cold (0°C) dimethylformamide (40% aqueous; 30 ml) and stirring was continued for 1 h. Thereafter, the reaction mixture was poured into water (150 ml) and dilute hydrochloric acid was added until the mixture became acidic to litmus. During this period, a solid precipitated was which was filtered off and washed with water. Chromatography using an eluent of ethyl acetate—light petroleum (1:3) afforded the amide (8) as colourless crystals (3.8 g; 88%), m.p. 121—122°C (chloroform—light petroleum); \(\nu_{\max} 3300 (NH)\) and 1635 (C=O) cm\(^{-1}\); \(\delta 3.05\) (3H, d, J 5.7 Hz, NCH\(_3\)), 3.90 (3H, s, OCH\(_3\)), 4.00 (3H, s, OCH\(_3\)), 7.40 (1H, s, 3-H), and 7.45—8.35 (5H, m, ArH and NH) (Found: C, 68.55; H, 6.10; N, 5.75. Calc. for C\(_{10}\)H\(_8\)N\(_2\)O\(_2\): C, 68.55; H, 6.10; N, 5.70%).

N-Methyl-2-carboxamido-1,4-naphthoquinone (9) To a mixture of the amide (8) (600 mg; 2.30 mmol) and silver(II) oxide (1.52 g; 12.26 mmol) in dioxane (10 ml) at room temperature was added nitric acid (6M, 4 ml) over a period of 5 min. Thereafter, the reaction was quenched by the addition of a chloroform—water mixture (26:6 ml). The organic layer was separated and the aqueous layer was extracted with dichloromethane.

Experimental

\(^{1}\)H N.m.r. spectra were recorded in deuteriochloroform on either a Varian EM 360, Varian XL-100 or Varian XL-200 spectrometer. Mass spectra were recorded on a VG Micromass 16F mass spectrometer at 70 eV and an ion source temperature of 180—220°. High resolution

N-Methyl-1,4-dimethoxy-2-naphthamide (8) The acid (7) (3.8 g; 16.38 mmol) was stirred with thionyl chloride (40 ml) for 40 min at room temperature, after which the excess of reagent was removed under reduced pressure. The oily residue was immediately taken up in dry acetone (10 ml) and slowly added to a stirred solution of cold (0°C) dimethylformamide (40% aqueous; 30 ml) and stirring was continued for 1 h. Thereafter, the reaction mixture was poured into water (150 ml) and dilute hydrochloric acid was added until the mixture became acidic to litmus. During this period, a solid precipitated was which was filtered off and washed with water. Chromatography using an eluent of ethyl acetate—light petroleum (1:3) afforded the amide (8) as colourless crystals (3.8 g; 88%), m.p. 121—122°C (chloroform—light petroleum); \(\nu_{\max} 3300 (NH)\) and 1635 (C=O) cm\(^{-1}\); \(\delta 3.05\) (3H, d, J 5.7 Hz, NCH\(_3\)), 3.90 (3H, s, OCH\(_3\)), 4.00 (3H, s, OCH\(_3\)), 7.40 (1H, s, 3-H), and 7.45—8.35 (5H, m, ArH and NH) (Found: C, 68.55; H, 6.10; N, 5.75. Calc. for C\(_{10}\)H\(_8\)N\(_2\)O\(_2\): C, 68.55; H, 6.10; N, 5.70%).

N-Methyl-2-carboxamido-1,4-naphthoquinone (9) To a mixture of the amide (8) (600 mg; 2.30 mmol) and silver(II) oxide (1.52 g; 12.26 mmol) in dioxane (10 ml) at room temperature was added nitric acid (6M, 4 ml) over a period of 5 min. Thereafter, the reaction was quenched by the addition of a chloroform—water mixture (26:6 ml). The organic layer was separated and the aqueous layer was extracted with dichloromethane.
Removal of the solvent from the dried (MgSO₄) extracts produced a residue which was chromatographed with eluent ethyl acetate – light petroleum (2:3), on a short column protected from the light, to yield the quinone (9) (490 mg; 92%). m.p. 127—128°C (chloroform – light petroleum). v_max 3350 (NH), 1680 (CONHMe), and 1665 (C = O of quinone) cm⁻¹; δ 3,05 (3H, d, J 5 Hz, NMe), 7.6—8.2 (5H, m, 3-H and ArH), and 8,65 (1H, br. s, NH) (Found: C, 66,75; H, 4,35; N, 6,50. Calc. for C₂₃H₂₂N₂O₅: C, 66,98; H, 4,19; N, 6,51%).

N-Methyl-3-(2'-hydroxypentyl)-2-carboxamido-1,4-naphthoquinone (10)

A mixture of quinone (9) (518 mg; 2,41 mmol) and 3-hydroxyhexanoic acid (795 mg; 6,02 mmol) in acetonitrile (30 ml) containing silver nitrate (200 mg; 1,08 mmol) in distilled water (3 ml) was treated dropwise with potassium persulphate (1,3 g; 4,81 mmol) in distilled water (30 ml) under nitrogen over a period of 40 min at 78°C (oil bath). After addition, stirring was continued for a further 90 min at 78°C and the reaction mixture was poured into water (200 ml). Ether extraction and chromatography of the product with eluent ethyl acetate – light petroleum (1:1) gave the alkylated quinone (10) as a yellow oil (377 mg; 52%). v_max (neat) 3430 (OH and NH), 1725 (CONHMe), and 1665 (C = O of quinone) cm⁻¹; δ 6,90 (3H, J 6,5 Hz, 5'-CH₃), 2,12—1,8 (4H, m, 3'- and 4'-CH₂), 2,45 (2H, m, 1'-CH₂), 2,85 (3H, d, J 5 Hz, NMe), 3,80 (1H, m, 2'-H), 5,20 (1H, br. s, D₂O exchangeable, OH), 7,01 (1H, br. s, NH), and 7,50—8,0 (4H, m, ArH) (M⁺, 301,1283. Calc. for C₁₇H₁₉N₂O₄: M⁺, 301,1314).

N-Methyl-1,4-dimethoxy-3-(2'-hydroxypropyl)-2-carboxamidonaphthalene (11)

The quinone (10) (320 mg; 1,06 mmol) was reductively methylated under the usual conditions,¹ to afford the dimethyl ether (11) as a colourless oil (260 mg; 74%). v_max (neat) 3370 br (OH and NH), 1635 (amide I) cm⁻¹; δ 0,90 (3H, distorted t, J 6,5 Hz, 5'-CH₃), 1,3—1,6 (4H, m, 3'- and 4'-CH₂), 2,65 (2H, m, 1'-CH₂), 2,95 (3H, d, J 5 Hz, NCH₃), 3,80 (6H, s, 2 × OCH₃), 3,90 (1H, m, 2'-H), 6,55 (1H, br. s, NH), 7,3—7,8 (2H, m, 6- and 7-H), 7,75—8,20 (2H, m, 5- and 8-and 9-H) (Found: C, 68,70; H, 7,70; N, 4,10%, M⁺, 331,1812. Calc. for C₂₃H₂₄N₂O₄: C, 68,88; H, 7,55; N, 4,23%, M, 331,1783).

5,10-Dimethoxy-3-propyl-2,3-dihydropaphto[2,3-c]pyran-(1H)-1-one (12)

Amide (11) (140 mg; 0,423 mmol) was pyrolysed in a nitrogen atmosphere at 170—200°C (oil bath) for 5 h. The cooled material was chromatographed in the dark using ethyl acetate – light petroleum (1:1) as eluent to afford the β-lactone (12) (51 mg; 37%). m.p. 105—106°C (from methanol) (lit.,¹ 98—99°C). The material was identical spectroscopically to that published in the literature.

4,5-Dimethoxy-1,7-di(2-propoxy)-3-trifluoroacetylnaphtalene (15)

The naphthol (14)⁹ (300 mg; 0,777 mmol) in dry acetone (20 ml) was treated with iodomethane (6,8 g; 48 mmol) and potassium carbonate (1 g; 7,25 mmol), and the mixture was vigorously stirred and heated under reflux in a nitrogen atmosphere for 3,5 h. The reaction mixture was cooled and filtered, and evaporation of the volatiles gave an oily residue which was chromatographed using ethyl acetate – light petroleum (1:4) as eluent to afford the product (15) (267 mg; 86%). m.p. 89—91°C (from methanol); v_max 1605 cm⁻¹; δ 1,43 [12H, d, J 6,5 Hz, 2 × CH(CH₃)₃], 3,83 (3H, s, OCH₃), 3,98 (3H, s, OCH₃), 4,73 [2H, m, 2 × CH(CH₃)₂], 6,60 (1H, d, J 2,5 Hz, 6-H), 6,95 (1H, s, 2-H), and 7,27 (1H, d, J 2,5 Hz, 8-H) (Found: C, 59,90; H, 5,60%; M⁺, 400,1514. Calc. for C₂₀H₂₃F₃O₅: C, 60,00; H, 5,75%; M⁺, 400,1497).

4,5-Dimethoxy-1,7-di(2-propoxy)-3-naphthoic acid (16)

Compound (15) (800 mg; 2 mmol) in methanol (15 ml) was added over a period of 15 min to a stirred solution of aqueous potassium hydroxide (12% w/v; 30 ml) at 70°C (oil bath). Stirring was continued for a further 40 min, after which the dark solution was poured into water (200 ml) and extracted with dichloromethane (2 × 50 ml). The aqueous layer was acidified with dilute HCl and extracted with dichloromethane (4 × 80 ml). The dried (MgSO₄) organic extract was stripped of solvent to yield the acid (16) (571 mg; 82%). m.p. 127—128°C (dichloromethane – light petroleum); v_max 3300—2500 br, 1660, and 1610 cm⁻¹; δ 1,43 [12H, d, J 6,5 Hz, 2 × CH(CH₃)₃], 3,93 (3H, s, OCH₃), 4,00 (3H, s, OCH₃), 4,71 [2H, m, 2 × CH(CH₃)₂], 6,60 (1H, d, J 3 Hz, 6-H), 7,23 (1H, d, J 3 Hz, 8-H), 7,37 (1H, s, 2-H), and 9,80 (1H, br. s, D₂O exchangeable, COOH) (Found: C, 65,50; H, 6,90. Calc. for C₂₀H₂₀O₄: C, 65,52; H, 6,90%).

4,8-Dichloro-5-methoxy-1,7-di(2-propoxy)-3-N-methylnaphthamidine (17)

The naphthoic acid (16) (400 mg; 1,15 mmol) was treated with distilled thionyl chloride (20 ml) and the solution was heated under reflux for 1 h. Evaporation of the excess of thionyl chloride under reduced pressure gave an oily residue which was taken up in dry acetone (5 ml). This solution was slowly added to cold (5°C) aqueous methyamine (40%; 30 ml) and the mixture was stirred for 3 h and then poured into water (100 ml). Extraction of this aqueous mixture with dichloromethane (4 × 40 ml) gave a residue, upon drying of the organic layer (MgSO₄) and evaporation of the solvent, which was chromatographed using ethyl acetate – light petroleum (3:7) as eluent to afford the product (17) (320 mg; 70%). m.p. 146—147°C (from 2-propanol); v_max 3300 and 1640 cm⁻¹; δ 1,43 [12H, d, J 6,5 Hz, 2 × CH(CH₃)₂], 3,04 (3H, d, J 5 Hz, NCH₃), 3,73 (3H, s, OCH₃), 4,67 [2H, m, 2 × CH(CH₃)₂], 7,33 (1H, s, 6-H), 7,53 (1H, s, 2-H), and 7,90 (1H, br. s, NH) (Found: C, 56,95; H, 5,80; N, 3,55. Calc. for C₂₁H₂₂Cl₂N₂O₄: C, 57,01; H, 5,75; N, 3,50%).
of a dichloromethane – water mixture (1:3) (20 ml) and was then diluted further with water (80 ml) and extracted with dichloromethane (3 × 50 ml). The dried (MgSO₄) extract was stripped of solvent to yield a residue that was chromatographed on a short column and eluted with ethyl acetate – light petroleum (7:3) to afford the quinone (21) (10 mg; 24%), m.p. 175–177°C (dichloromethane – light petroleum); \(\nu_{\text{max}} \) 3300, 1685, and 1665 cm\(^{-1} \); δ 1.43 [6H, d, J 6.5 Hz, CH(C\(_2\))\(_3\)], 2.97 (3H, d, J 5 Hz, NCH\(_3\)), 3.95 (3H, s, OCH\(_3\)), 4.73 [1H, sept., J 6.5 Hz, CH(C\(_2\))\(_3\)], 6.70 (1H, d, J 2.5 Hz, 6-H), 6.80 (1H, d, J 2.5 Hz, 8-H), 7.68 (1H, s, 2-H), and 8.90 (1H, br, s, NH) (Found: C, 63.00; H, 5.90; N, 4.40. Calc. for C\(_{20}\)H\(_{17}\)NO\(_5\): C, 63.37; H, 5.61; N, 4.62%).

2-(2-Hydroxypentyl)-5-methoxy-7-(2-propyloxy)-3-n-methylcarboxamido-1,4-naphthoquinone (22)

Quinone (21) (83 mg; 0.274 mmol) in acetonitrile (30 ml) containing 3-hydroxyhexanoic acid (68 mg; 0.515 mmol) and silver nitrate (120 mg; 0.706 mmol) in distilled water (3 ml) was treated dropwise with aqueous potassium persulphate (122 mg; 0.452 mmol) in distilled water (10 ml) under nitrogen, over a period of 55 min and at 70°C (bath temperature). The resulting solution was stirred for a further 90 min at 70°C, and then poured into water (150 ml) and extracted with dichloromethane. Solvent was stripped from the dried (MgSO₄) extract to leave a residue which was chromatographed using ethyl acetate – light petroleum (4:1) as eluent to afford the very unstable quinone (22) (16 mg; 14%) as an oil; \(\nu_{\text{max}} \) (neat) 3400, 1723, and 1644 cm\(^{-1} \); δ 0.93 (3H, distorted t, J 6 Hz, 5'-CH\(_3\)), 1.43 [6H, d, J 6.5 Hz CH(C\(_2\))\(_3\)], 1.20–1.80 (4H, m, 3'- and 4'-H), 2.5 (1H, m 2'-H), 2.86 (3H, d, J 5 Hz, NCH\(_3\)), 3.83 (3H, s, OCH\(_3\)), 4.70 [1H, sept., J 6.5 Hz, CH(C\(_2\))\(_3\)], 6.55 (1H, d, J 2.5 Hz, 6-H), 7.05 (1H, d, J 2.5 Hz, 8-H), 7.35 (1H, br, s, NH), and 7.90 (1H, s, D₂O exchangeable, OH) (Found: M\(^+\), 389,1816. Calc. for C\(_{23}\)H\(_{23}\)NO\(_6\): M, 389,1838).

4.5-Dimethoxy-1,7-di-(2-propyloxy)-3,N-dimethylnaphthoquinone (23)

The amide (19) (357 mg; 0.989 mmol) in dry tetrahydrofuran (20 mol) was treated with sodium hydride (50% dispersion; 475 mg) and stirred for 15 min. Iodomethane (9 g; 63.34 mmol) was added and stirring was continued for a further 3 h. Thereafter, saturated aqueous ammonium chloride (10 ml) was slowly added and the resulting mixture was extracted with ether (4 × 10 ml). The residue obtained from dried ether extracts was chromatographed using ethyl acetate – light petroleum (3:2) as eluent to afford the tertiary amide (23) (345 mg; 93%), m.p. 93–94°C (from ethyl acetate – light petroleum); \(\nu_{\text{max}} \) 1615, 1595, and 1585 cm\(^{-1} \); δ 1.41 [12H, d, J 6.5 Hz, 2 × CH(C\(_2\))\(_3\)], 2.90 and 3.13 [each 3H, s, N(CH\(_2\))\(_3\)], 3.80 and 3.95 (each 3H, s, OCH\(_3\)), 4.70 [2H, sept., J 6.5 Hz, 2 × CH(C\(_2\))\(_3\)], 6.37 (1H, d, J 2.5 Hz, 6-H), 6.63 (1H, s, 2-H), and 7.16 (1H, d, J 2.5 Hz, 8-H) (Found: C, 67.10; H, 7.60; N, 3.65%; M\(^+\), 375,1707. Calc. for C\(_{24}\)H\(_{21}\)NO\(_7\): C, 67.16; H, 7.73; N, 3.73%; M, 375,2045).
5-Methoxy-7-(2-propoxy)-3-N,N-dimethylcarboxamido-1,4-naphthoquinone (24)

The amide (23) (330 mg; 0.88 mmol) and silver(II) oxide (436 mg; 3.5 mmol) in dioxane (6 ml) were treated dropwise and with stirring with nitric acid (6M; 3 ml) over a period of 4 min. Work-up as for compound (20) followed by chromatography using ethyl acetate as eluent gave the quinone (24) (40 mg; 14%), m.p. 155—157°C (from acetone – light petroleum); νmax 1635 and 1590 cm⁻¹; δ 1.41 [6H, d, J 6.5 Hz, CH(CH₃)₂], 2.95 and 3.12 [each 3H, s, N(CH₃)₂], 3.96 (3H, s, OCH₃), 4.70 [1H, septet, J 6.5 Hz, CH(CH₃)₂], 6.73 (1H, d, J 2.5 Hz, 6-H), 6.80 (1H, s, 2-H), 7.20 (1H, d, J 2.5 Hz, 8-H) (Found: C, 64.35; H, 6.05; N, 4.50. Calc. for C₁₇H₁₉NO₅: C, 64.35; H, 6.00; N, 4.42%).

Acknowledgements

Financial assistance from the Foundation for Research Development and the Councils of the Universities of Cape Town and of the Western Cape as well as the Council of the Cape Technikon is gratefully acknowledged.

References